Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tor forms a dimer through an N-terminal helical solenoid with a complex topology.

Identifieur interne : 000973 ( Main/Exploration ); précédent : 000972; suivant : 000974

Tor forms a dimer through an N-terminal helical solenoid with a complex topology.

Auteurs : Domagoj Bareti [Royaume-Uni] ; Alex Berndt [Royaume-Uni] ; Yohei Ohashi [Royaume-Uni] ; Christopher M. Johnson [Royaume-Uni] ; Roger L. Williams [Royaume-Uni]

Source :

RBID : pubmed:27072897

Descripteurs français

English descriptors

Abstract

The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended 'railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

DOI: 10.1038/ncomms11016
PubMed: 27072897
PubMed Central: PMC4833857


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tor forms a dimer through an N-terminal helical solenoid with a complex topology.</title>
<author>
<name sortKey="Bareti, Domagoj" sort="Bareti, Domagoj" uniqKey="Bareti D" first="Domagoj" last="Bareti">Domagoj Bareti</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berndt, Alex" sort="Berndt, Alex" uniqKey="Berndt A" first="Alex" last="Berndt">Alex Berndt</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohashi, Yohei" sort="Ohashi, Yohei" uniqKey="Ohashi Y" first="Yohei" last="Ohashi">Yohei Ohashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Christopher M" sort="Johnson, Christopher M" uniqKey="Johnson C" first="Christopher M" last="Johnson">Christopher M. Johnson</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williams, Roger L" sort="Williams, Roger L" uniqKey="Williams R" first="Roger L" last="Williams">Roger L. Williams</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27072897</idno>
<idno type="pmid">27072897</idno>
<idno type="doi">10.1038/ncomms11016</idno>
<idno type="pmc">PMC4833857</idno>
<idno type="wicri:Area/Main/Corpus">000A64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A64</idno>
<idno type="wicri:Area/Main/Curation">000A64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A64</idno>
<idno type="wicri:Area/Main/Exploration">000A64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tor forms a dimer through an N-terminal helical solenoid with a complex topology.</title>
<author>
<name sortKey="Bareti, Domagoj" sort="Bareti, Domagoj" uniqKey="Bareti D" first="Domagoj" last="Bareti">Domagoj Bareti</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Berndt, Alex" sort="Berndt, Alex" uniqKey="Berndt A" first="Alex" last="Berndt">Alex Berndt</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohashi, Yohei" sort="Ohashi, Yohei" uniqKey="Ohashi Y" first="Yohei" last="Ohashi">Yohei Ohashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Christopher M" sort="Johnson, Christopher M" uniqKey="Johnson C" first="Christopher M" last="Johnson">Christopher M. Johnson</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williams, Roger L" sort="Williams, Roger L" uniqKey="Williams R" first="Roger L" last="Williams">Roger L. Williams</name>
<affiliation wicri:level="1">
<nlm:affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 0QH</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cryoelectron Microscopy (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Kluyveromyces (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Multiprotein Complexes (chemistry)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Multiprotein Complexes (ultrastructure)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (chemistry)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>TOR Serine-Threonine Kinases (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (composition chimique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Complexes multiprotéiques (ultrastructure)</term>
<term>Cryomicroscopie électronique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Kluyveromyces (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Sérine-thréonine kinases TOR (composition chimique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Kluyveromyces</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Kluyveromyces</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Catalytic Domain</term>
<term>Cryoelectron Microscopy</term>
<term>Humans</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Cryomicroscopie électronique</term>
<term>Domaine catalytique</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Multimérisation de protéines</term>
<term>Souris</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended 'railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27072897</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Tor forms a dimer through an N-terminal helical solenoid with a complex topology.</ArticleTitle>
<Pagination>
<MedlinePgn>11016</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms11016</ELocationID>
<Abstract>
<AbstractText>The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended 'railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Baretić</LastName>
<ForeName>Domagoj</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Alex</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6822-6098</Identifier>
<AffiliationInfo>
<Affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohashi</LastName>
<ForeName>Yohei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Roger L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MC_U105184308</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U105184308</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007716" MajorTopicYN="N">Kluyveromyces</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27072897</ArticleId>
<ArticleId IdType="pii">ncomms11016</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms11016</ArticleId>
<ArticleId IdType="pmc">PMC4833857</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2015 Feb;189(2):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25486611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2015 Feb;36(2):124-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2015 Apr;33:55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25554914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15899889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):977-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):48-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015;4. pii: e11182. doi: 10.7554/eLife.11182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26623517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Feb;26(2):148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 May;25(5):225-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10782091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Jul 1;60(13):3504-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10910062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Nov;22(21):7428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12370290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jan 24;112(2):151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Apr 28;161(2):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jul 12;273(5272):239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(7):2302-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Sep 19;16(18):1865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Oct 15;20(20):2820-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2006 Dec;18(6):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2007 Jan;157(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Aug 3;27(3):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17679098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Dec 28;131(7):1248-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 May 13;13(10):797-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12747827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Oct 31;333(4):721-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Sep 15;7(18):2809-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009;77 Suppl 9:128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19626712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 7;463(7277):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2010 May;170(2):354-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20060908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Jun 11;38(5):768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 25;285(26):20109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Sep 15;24(18):2019-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20863387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2011 Oct;73(3-4):209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Feb;13(2):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22240970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 3;485(7396):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22552098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Sep;9(9):853-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22842542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2012 Dec;180(3):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23000701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013;2:e00461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23427024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23361334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 9;497(7448):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jun;10(6):584-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jul 26;341(6144):1236566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Oct 1;18(4):465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23973332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultramicroscopy. 2013 Dec;135:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Jan;11(1):63-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Mol Med. 2014;6(8):995-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2014 Aug 5;22(8):1105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014;3:e03665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2014 Dec;36:121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2014 Dec;29:134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25460276</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Bareti, Domagoj" sort="Bareti, Domagoj" uniqKey="Bareti D" first="Domagoj" last="Bareti">Domagoj Bareti</name>
</noRegion>
<name sortKey="Berndt, Alex" sort="Berndt, Alex" uniqKey="Berndt A" first="Alex" last="Berndt">Alex Berndt</name>
<name sortKey="Johnson, Christopher M" sort="Johnson, Christopher M" uniqKey="Johnson C" first="Christopher M" last="Johnson">Christopher M. Johnson</name>
<name sortKey="Ohashi, Yohei" sort="Ohashi, Yohei" uniqKey="Ohashi Y" first="Yohei" last="Ohashi">Yohei Ohashi</name>
<name sortKey="Williams, Roger L" sort="Williams, Roger L" uniqKey="Williams R" first="Roger L" last="Williams">Roger L. Williams</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000973 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000973 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27072897
   |texte=   Tor forms a dimer through an N-terminal helical solenoid with a complex topology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27072897" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020